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In [1] a single expression was proposed for the turbulent diffusion
coefficient of rather large suspended particles, for which the well-
known equation D = N ([2], p. 420) is not fulfilled. Some experi-
mentally verified conditions which limit the applicability of the pro-
posed expression are given below.

NOTATION

po and p are the densities and fluidities of the suspended particles,
respectively; s is the volume concentration of the suspended particles;
N and D are the wrbulent viscosity and diffusion coefficients, respec-
tively; q is the diffusion flow of suspended matter, |q| =g; g is the
gravitational acceleration; v is the lateral velocity of the suspension
liquid; ais the relative velocity of the suspended particles, lal =a
and p is the pressure. Angle brackets denote an averaging sign, and a
prime denotes a pulsation sign.

First we will show that variation should be expected in the equation
D = N under certain conditions. We use, for the behavior of parti-
cles at low concentration, equations which do not affect the velocity
field u(x,t) of the "pure" liquid
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Here terms which express the effect of the molecular structure of
the liquid are omitted. With the Reynolds method of averaging we
represent the functions as sums of average values and pulsations. We
multiply the first equation of (1) by the velocity pulsation and the
last equation of (1) by the concentration pulsation. By averaging these
equations and adding them together we obtain
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where 9 = <u's> and II = <u'u”, Thisequation, whichrepresentsthe
balance of the quantity q and which determines this value, is similar to
the well-known one ([2], p. 296) for the balance of the quantity II.
From Eq. (2) it follows that the expression q which does not depend on
a, canonly occur when the term in Eq. (2) proportional to a is neg-
ligibly small. This can happen if the ratio modulus of the above men-
tioned term to the first term in the right-hand side of Eq. (2) is much
less than unity, and this, in turn, can occur at:
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For steady lateral diffusion, in which
g = ay <s>, (3)

the above inequality assumes the required form
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During violation of Eq. (4), for example owing to rather high
values of a, the equation q = g{a) must hold. Since g —D- v <s>,
D = D(a) must hold and consequently D # N since N # N(a). Thus,
the last inequality shows that during violation of Eq. (4) D # N. However,
it is clear that this inequality is not a sufficient condition for validity
of the equation D = N (the validity of the latter is confirmed by experi-
ment [1]).
In [1] it was proposed to use an expression linear in «
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We will determine the applicability of this expression. For this
purpose we will consider the well-known equation [3] for steady lateral
balance of lateral turbulence intensity in a uniform two-dimensional
suspension flow. As before, we neglect the effect of molecular struc-
ture:
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In [1,8] it was shown on the assumption that some of the terms are
small that Eq. (6) leads to the expression D(a), but the conditions
smallness have not been formulated quantitatively. We will formulate
such conditions. From Eq. (6) it follows that the expression q, which is
linear in a, will occur if the terms which are quadratic in a are ne-
glected. We take account of the well-known result [4]:
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with <s> « 1, when a = const, we assume that <s> « 1 in Eq. (6),
we denote <v'#> by lyy. and we write the following conditions for
smallness in the quadratic terms:
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Condition (7) corresponds to smallness of the second term in pa-
rentheses on the left~hand side of Eq. (6). Condition 8 corresponds to
smallness of part of the last term in Eq. (6). Equation (8) is taken into
account in both conditions.

Inequalities (7) and (8) make it possible to determine when the
linear expression q(a) should notbeused. Sinceqand D are proportional,
these same inequalities show when Eq. (5) should not be used. How-
ever, these inequalities are not sufficient conditions for the validity of
Eq. (8) (the validity of this equation has been confirmed by experi-
ment [1]).

Thus, it was possible above to obtain conditions (4), (7), and (8),
which indicate the region in which it is not possible to use the cor-
responding expressions for the diffusion coefficient. It is important
to note that in the case of diffusion of air bubbles in a liquid, with
pw < pg, experiments completed [1] confirm Eq. (5), and conditions
(7) and (8) are fulfilled. At the same time, for other particles, with
ps ™ pg, condition (8) will not be fulfilled so that here it will not be
possible to use Eq. (5). Condition (8) is also extremely rigid for solid
particles in a gas, when p« > py. In this case conditions (4) and (8)
practically coincide so that if it is not possible to use the expression
D = N it is also not possibie to use expression (5). In practice condition
(7) presents an important limitation on the applicability of Eq. (5) for
the case of rather high concentrations of suspended particles.

We note that inequalities are obtained above, which limit
the applicability of Eq. (5) by conditions imposed on quantity a.
There also exist a number of limiting conditions, which depend on
the degree of nonstationarity and nonuniformity of the process. To
determine them we return to Eq. (2), in which for simplicity we omit
the term proportional to a, assuming that it is small. We express the
two last terms of this equation with a form linear in q. We interpret
the first term as local dissociation of q in the pressure~-velocity field,
and the second as displacement ofq owing to diffusion. We obtain
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where Tis the time scale of turbulence and c is a constant on the
order of unity. The hypotheses adopted make this equation similar to
the well-known equation [5] for the linear invariant II.

Hence it follows that the linear diffusionlaw q ~ V <s> will only
occur for a ratio modulus, small in comparison with unity, of the first,
third, and last terms in Eq. (9) to the second or fourth. From Eq. (9) in
this case it followsthatq = =711l V <s>, and vII = N, since for small
particles D = N. In practice, slowly changing flows usually occur with
lateral diffusion, and for these the above-mentioned three conditions
have the foliowing form:
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By means of Eq. (3) and the equation D = N the last condition for
stationary one-dimensional diffusion reduces to
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Thus the equation D = N is valid only for fulfillment of conditions
(4) and (10)—(12). It is more difficult to formulate conditions for the
validity of Eq. (5) in a similar manner, since this would require infor~
mation on a number of important features, which at present is not
available.
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