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In [1] a s ingle  expression was proposed for the turbulent  diffusion 
coeff ic ien t  of rather  la rge  suspended par t ic les ,  for which the we l l -  
known equat ion D = N ([2],  p. 420) is not fulf i l led.  Some experi-  
men ta l ly  ver i f ied condit ions which l i m i t  the app l icab i l i ty  of the pro- 
posed expression ate  g iven  below. 

NOTATION 

P0 and p are the densit ies and f luidi t ies  of the suspended par t ic les ,  

respect ively;  s is the volume concentrat ion of the suspended particles;  
N and D are the turbulent viscosity and diffusion coeff icients ,  respec-  
t ively; q is the diffusion flow of suspended mat ter ,  [ ql = q; g is the 

g rav i ta t iona l  accelera t ion;  v is the la te ra l  ve loc i ty  of the suspension 

liquid; a is the r e l a t ive  ve loc i ty  of the suspended part inles,  [ al = a; 
and p is the pressure. Angle brackets denote an averaging sign, and a 
pr ime denotes a pulsat ion sign. 

First we wi l l  show that  var ia t ion should be expected  in the equat ion 
D = N under ce r ta in  conditions.  We use, for the behavior  of pa r t i -  

cles at  low concentra t ion,  equations which do not affect  the ve loc i ty  
field u(x, t) of the "pure" l iquid 

du = t - d s = a.  Vs, div u = 0, ~ g - -  - -  v p .  (1) 
Po 

Here terms which express the effect  of the molecu la r  structure of 
the l iquid are omit ted .  With the Reynolds method of averaging we 

represent the functions as sums of average  vaines and pulsations.  We 

mul t ip ly  the first equat ion of (1) by the ve loc i ty  pulsat inn and the 

last  equat ion of (1) by the concentrat ion pulsation.  By averaging these 
equations and adding them together we obtain 

( O  + < u > . V ) q = - - I I . V < s > - - q . V < u > + < u ' a . V s ' > - -  

I <s'~Tp'> - -  div <flu'd>, (2) 
Po 

where q = <u's'> and 1t = <u'u'>, This equation,  which represents the 
ba lance  of the quant i ty  q and which determines  this value,  is s imi la r  to 
the we l l -known one ([2J, p. 296) for the ba l ance  of the quant i ty  17. 

From Eq. (2) i t  follows that  the expression q which does not depend on 
a, can  only occur when the term in Eq. (2) proportional to a is neg-  

l ig ib ly  smal l .  This can happen i f  the rat io  modulus of the above men-  
tioned term to the first term in the r ight -hand side of Eq. (2) is much 
less than unity,  and this, in turn, can  occur at: 

a.~Zq 4 1  . II .~'  <s> 

For steady l a t e r a l  diffusion, in which 

q = a~ <s>, (3) 

the above inequal i ty  assumes the required form 

aYa . ~  I .  (4) 
IIyy 

During v io la t ion  of Eq. (4), for example  owing to ratr~cr high 
values of a,  the equat ion q = q(a) must hold.  Since q--* --D. V < s > ,  

D = D(a) must hold and consequently D ~ N since N e N(a). Thus, 

the last  inequal i ty  shows that  during v io la t ion  ofEq. (4) D ~ N. However, 
i t  is c lear  that  this inequa l i ty  is not a sufficient condit ion for va l id i ty  
of the equat ion D = N (the va l id i ty  of the la t ter  is confirmed by exper i -  
men t  [ l j ) .  

In [1] i t  was proposed to use an expression l inear  in a 
a 

D :  N q- ~-II  �9 (5) 

We wi l l  de te rmine  the app l i cab i l i t y  of this expression, For this 
purpose we wi l l  consider the wel l -known equat ion [3] for steady l a t e ra l  

ba lance  of  l a t e r a l  turbulence intensity in a uniform two-d imens iona l  
suspension flow. As before,  we neg lec t  the effect  of molecu la r  struc- 
ture: 

12 dyd-" <pv'~v> + (<p> <v'b + <p'v'> <v> + <p'v'~>)~ v = 

/ v ,  op, \ 
= (p,i--po) q g v - - ,  N - ~ / -  

- -pop .  < v '  div s ( !  ~--") a % >  . (6) 

In [1 ,3 j  i t  was shown on the assumption tha t  some of the terms are 
smal l  that  Eq. (6) leads to the expression D(a), but the conditions 
smallness have  not been formulated quan t i t a t ive ly .  We wilI  formulate  

such conditions. From Eq. (6) i t  follows that  the expression q, which is 
l inear  in a,  wi l l  occur i f  the terms which are quadrat ic  in a are ne-  

g lec ted .  We take  account  of the wel l -known result  [4] : 

<v) . . . .  P . - - P o  % <s), 
Po 

with < s >  << 1, when a = const, we assume that  < s >  << 1 in Eq. (6), 

we denote < v ' Z >  by I lyy,  and we write the following conditions for 
smallness in the quadrat ic  terms: 

<P~><~> =[ Po<~>~ --[<s>P~ % '~< I  (7) 
poTTv~ po1"I~ - -  P~ I T I v - - ~ ' ~  ' 

p,ay~dq/dy  P* -~t ~ t (8) 
"pOIIyvd < v > / dY ~ P~--  Po a *" IIuy 

Condit ion (7) corresponds to smallness of the second term in pa -  

rentheses on the le f t -hand side of Eq. (6). Condit ion 8 corresponds to 
smallness of part of the las t  term in Eq. (6). Equation (3) is taken into 
account  in both conditions.  

Inequal i t ies  (7) and (8) m a k e  i t  possible to de termine  when the 

l inear  expression q(a) should not be used. Since q and D are proportionai,  
these same inequal i t ies  show when Eq. (5) should not be used. How- 

ever, these inequal i t ies  are not sufficient conditions for the va l id i ty  of 
Eq. (6) ( the va l id i ty  of this equat ion has been confirmed by exper i -  
ment  [1]).  

Thus, i t  was possible above to obtain conditions (4), (7), and (8), 
which ind ica te  the region in which it is not possible to use the cor-  

responding expressions for the diffusion coeff ic ient .  It is important  
to note  that  in the case of diffusion of air bubbles in a l iquid,  with 

O* << P0, exper iments  comple ted  [1] confirm Eq. (5), and conditions 
(7) and (8) are fulf i l led.  At the same t ime,  for other par t ic les ,  with 

P* ~" Po, condit ion (8) wi l l  not be fuif i l led so that here  i t  wi l l  not be 
possible to use Eq. (6). Condit ion (8) is also ex t r eme ly  r igid for solid 
par t ic les  in a gas, when/9,  >> P0. In this ease conditions (4) and (8) 
p rac t i ca l ly  coincide  so that  i f  i t  is not possible to use the expression 
D = N i t  is also not possible to use expression (5). In p rac t i ce  condit ion 
(7) presents an impor tant  l imi t a t ion  on the app l i cab i l i ty  of Eq. (g) for 
the case of rather high concentrat ions of suspended par t ic les .  

We note  that  inequal i t ies  are  obtained above,  which l i m i t  
,the app l i cab i l i t y  of Eq. (6) by conditions imposed on quant i ty  a. 
There also exist  a number of l im i t i ng  condit ions,  which depend on 
the degree of nonstat ionari ty and nonuniformity of the process. To 
de te rmine  them we return to Eq. (2), in which for s impl ic i ty  we omi t  

the te rm proportional to a, assuming that  i t  is smal l .  We express the 

two last  terms of this equat ion with a form l inear  in q. We interpret  
the first te rm as l oca l  dissociat ion of q in the pressure-veloci ty  field,  
and the second as d i sp lacement  ofq owing to diffusion. We obtain 
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d 
d-[ q = - l I ' ~ J  ( s > - q ' x T  <u> + q (9) 

where Tis the time scale of turbulence and c is a constant on the 
order of unity. The hypotheses adopted make this equation similar to 
the well-known equation [5] for the linear invariant II. 

Hence it follows that the linear diffusion law q ~ X7 < s >  will only 
occur for a ratio modulus, small in comparison with uaky, of the first, 
third, and last terms in Eq. (9) to the second or fourth. From Eq. (9) in 
this case it follows that q = --rlI" V < s > ,  and vii = N, since for small 
particles D = N. In practice, slowly changing flows usually occur with 
lateral diffusion, and for these the above-mentioned three conditions 
have the following form: 

ay ] 

\ r I ~, ag l I 

Thus the equation D = N is valid only for fulfillment of conditions 
(4) and (10)-(12). It is more difficult m formulate conditions for the 
validity of Eq. (5) in a similar manner, since this would require infor- 
mation on a number of important features, which at present is not 
available. 
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By means of Eq. (3) and the equation D = N the last condition for 
stationary one-dimensional diffusion reduces m 
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